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Resumen

Introducción y objetivo: La Variabilidad de la Frecuencia Cardiaca (VFC) puede proporcionar información útil sobre diferentes 
situaciones fisiológicas. El objetivo de este estudio fue analizar los índices de variabilidad de la frecuencia cardiaca (VFC) tras 
la aplicación de diferentes filtros incluidos en un programa de análisis utilizado.
Material y método: Se registraron 30 mediciones de la señal del rimo cardíaco, pertenecientes a futbolistas profesionales. 
La VFC se registró en una posición sentada, por la mañana y en ayunas. Se realizó un registro de 10 min de duración con el 
monitor de ritmo cardiaco Firstbeat Bodyguard y todos las series de intervalos RR fue importada y analizada con el software 
Kubios®. Cada serie de tiempo se analizó sin un filtro (ninguno) y posteriormente con cada uno de los cinco filtros diferentes 
(Muy bajo = 0,45 seg. Bajo = 0,35 seg. Medio = 0,25 seg. Fuerte = 0,15 seg. = Muy fuerte 0,05 seg). Las variables analizadas per-
tenecen al dominio de tiempo (desviación estándar de los intervalos RR (SDNN), la raíz cuadrada de la media de los cuadrados 
de las diferencias entre intervalos adyacentes RR (rMSSD) y el número de pares de intervalos RR adyacentes que difieren en 
más de 50 ms en toda la grabación, dividido por el número total de intervalos RR y expresada como un porcentaje (pNN50)); 
al dominio de la frecuencia (HF: alta frecuencia, LF: baja frecuencia y VLF: muy baja frecuencia, tanto en términos de potencia 
y la frecuencia de pico); los diámetros del gráfico de Poincaré (SD1 y SD2); así como la complejidad interna de la señal, con el 
análisis de la fluctuaciones sin tendencias (α1 y α2) y entropía aproximada y muestral (ApEn y SampEn).
Resultados: Se encontró sólo diferencia significativa en rMSSD, pNN50, HF y LF en términos de potencia y SD1 cuando se 
compararon los registros al aplicar el filtro muy fuerte con sin filtro.
Conclusión: El sistema de filtrado proporcionada por el software Kubios® para tratar los artefactos no afectó a los valores de 
los índices de VFC analizados, excepto cuando se aplicó el filtro “muy fuerte”.
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Summary

Background and objective: Heart rate variability (HRV) can provide useful information on different physiological situations. 
The aim of this study was to analyse heart rate variability (HRV) indices following the application of different filters included 
in a widely used analysis program.
Material and method: 30 measurements were recorded of the heart rate signal of professional footballers. HRV was recorded 
in a sitting position, early morning and fasting. The HR monitor Firstbeat Bodyguard recorded HR data for 10 minutes during 
every measurement and Kubios® software imported and analysed all RR intervals. Each recording was analysed without a filter 
(none) and subsequently with each of the five different filters (very low=0.45 sec. low=0.35 sec. medium=0.25 sec. strong=0.15 
sec. very strong=0.05 sec). The variables analysed pertained to time domain (standard deviation of RR intervals (SDNN), the 
square root of the mean of the squares of the differences between adjacent RR intervals (rMSSD) and the number of pairs of 
adjacent RR intervals that differ by over 50ms in the whole recording, divided by the total number of RR intervals and expressed 
as a percentage (pNN50)); frequency domain (high frequency HF, low frequency LF, very low frequency VLF, both in terms of 
power and peak frequency); the diameters of the Poincaré plot (SD1 and SD2); as well as the internal complexity of the signal, 
Detrended Fluctuation Analysis (α1 and α2) and approximate and sample entropy (ApEn and SampEn).
Results: A significant difference was only found for rMSSD, pNN50, LF power and HF power and SD1 when comparing the 
analysis of the no filter recording with the very strong filter.
Conclusion: The filtering system provided by the Kubios® software to treat the artefacts did not affect the values of the HRV 
indices analysed, except when the “very strong” filter was applied.
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Introduction

Heart rate variability (HRV) is the variation that occurs in the series 
of time interval measured between two consecutive heartbeats (RR 
interval)1,2. HRV is a non-invasive method that enables us to evaluate 
the interaction between the sympathetic and parasympathetic nervous 
system, reflecting the heart’s capacity to adapt to changing physiological 
conditions. In fact, a lower HRV indicates a predominance of sympathetic 
activity and an augmented HRV indicates a predominance of parasym-
pathetic activity on the sino-auricular (SA) node1.

HRV has been widely studied in cardiac patients1,3-6 as well as 
athletes7,8, among other areas. Different devices have been used for this 
purpose, from a holter to different heart rate monitors. In many cases, 
however, it is hard to get a good HRV measurement owing to the appea-
rance of artefacts in the signal. This could be caused by technical factors 
(including missed beats) or by the appearance of ectopic beats. Technical 
causes can pertain to poor placement of the electrodes during measu-
rement or to the movement of the subject during the test, particularly 
during long recordings or when the subject is asleep. Ectopic beats can 
be normal and relatively common in healthy subjects1,9. 

For some authors, the presence of ectopic beats can modify the va-
lues of the HRV indices by up to 50% of the final results9. Hence, artefacts 
in the signal must be treated following HRV measurement in order to 
obtain suitable results10,11. Many methods and algorithms for editing or 
correcting dubious R–R intervals have been developed and evaluated. 
Some of the common artifact correction and editing techniques involve 
deletion, interpolation of degree zero, interpolation of degree one (linear 
interpolation), and cubic spline interpolation. Interpolation methods re-
place the non-normal R–R intervals with new interpolated R–R intervals. 
Unlike the deletion method, interpolation methods preserve the initial 
number of samples. Most interpolation methods can be considered to 
serve as low-pass filters with different filtering capacities. Interpolation 
of degree zero substitutes the abnormal R–R intervals with an average 
value that is computed from the neighbouring normal R–R intervals. In 
interpolation of degree one, called linear interpolation, a straight line is 
fitted over the abnormal R–R intervals to obtain new values. One popular 
spline interpolation method is a cubic spline interpolation, where smooth 
curves are estimated through a number of data points by fitting a third 
degree polynomial. It has been recommended to use interpolation 
methods when R–R interval time series contain occasional ectopic beats 
and artefacts. This especially concerns the power spectrum HR variability 
analysis12. In addition, several other methods have been proposed for 
artefact correction such as comparing and merging method13, the pre-
dictive autocorrelation method14, non-linear predictive interpolation15, 
exclusion of R–R interval segments with divergent duration16,17, impulse 
rejection18, the integral pulse frequency model19,20, the sliding window 
average filter21, non-linear filtering combined with wavelet based trend 
removal22, and threshold filtering also with wavelet based trend removal23.

Some studies have compared the impact of editing methods on 
the results of HRV analysis8,14,15,24-27. However, although these studies yield 
different results depending on the type of study, the message was the 
same: filtering methods affect HRV analysis. The differences between the 
results could be attributable to the type of study population used, the 

length of the R-R interval time series, the editing method, the number 
of samples edited, etc. 

Furthermore, there is an increasingly widespread use of commercial 
software that by default previously filters the signal without the user 
knowing exactly what has been done, or in the best case scenario, 
software that allows the user to apply different types of filter discretio-
nally. Anyway, automatic filters that exclude some intervals from the 
original RR sequence should not replace manual editing because they 
are known to behave unsatisfactorily and to have undesirable effects 
leading potentially to errors.

Moreover, in commercial software that offer the possibility of 
choosing different filter levels, this choice is subjective by the examiner. 
Therefore, given a specific number of artifacts, we do not know if the 
result would be the same if the time series is subjected to a type of 
filter or other. This is what happens to Kubios, one of the commercial 
programs more often are being used in recent times in the analysis of 
HRV. It offers five levels of filtering that users will choose based on their 
inspection of the track.

The aim of this study was to analyse HRV indices for a group of 
athletes in all the domains following the application of different filters 
included in a commonly used analysis software.

Material and method

Study samples

30 heart rate signal recordings were analysed, belonging to high le-
vel professional athletes (aged 25.22 ±3.41 years old; weight 74.42±7.31 
Kg; height 178.85±7.83 cm). The Local Ethics Board approved the study, 
which followed all the principles set out in the Declaration of Helsinki. All 
subjects signed an informed written consent to participate in this study. 

Method 

HRV was recorded along 10 minutes in a sitting position, early 
morning and fasting. The subjects were seated for 10 minutes before 
recording to explain the conditions. They were asked to remain in the 
same position without speaking during the recording time.

The HR monitor Firstbeat Bodyguard (Firstbeat Technologies; Jyväs-
kylä. Finland) recorded HR data for 10 minutes during each recording. 
This two channel monitor acquires RR intervals with 1 ms resolution and 
a sampling rate of 256 Hz. Firstbeat Uploader (Firstbeat Technologies; 
Jyväskylä, Finland) software downloaded the data from the devices to 
the computer and Kubios® software28 (Kubios HRV. 2.1, Biosignal Analysis 
and Medical Imaging Group, Kuopio, Finland) imported and analysed 
all RR series. Following the manufacturer’s instructions in order to avoid 
the interference of artefacts, the time series were manually checked for 
artefacts before the analysis28,29.

Kubios® (Finland) is a widely used free software for HRV analysis 
and it includes artefact correction options that can be used to correct 
artefacts from a corrupted RR interval series28,29. The user can select 
between very low, low, medium, strong, and very strong correction 
levels. In addition, a custom level in seconds can be set. The different 
correction levels define thresholds (very low=0.45 sec, low=0.35 sec, 
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medium=0.25 sec, strong=0.15 sec, very strong=0.05 sec) for detecting 
RR intervals differing “abnormally” from the local average RR interval. For 
example, the “medium” correction level will identify all RR intervals that 
are larger/smaller than 0.25 seconds compared to the local average. 
Furthermore, the above correction thresholds are for 60 beats/min 
heart rate; for higher heart rates the thresholds are smaller (because the 
variability is expected to decrease when HR increases). The corrections 
to be made on the RR series are displayed on the RR interval axis. A 
piecewise cubic spline interpolation method is used in the corrections28. 

Each recording was analysed without a filter (none) and then sub-
sequently with each of the five different filters (very low, low, medium, 
strong and very strong). 

The variables analysed were: in the time domain1, the standard 
deviation of RR intervals (SDNN), the square root of the mean of the 
squares of the differences between adjacent RR intervals (rMSSD) and 
the number of pairs of adjacent RR intervals that differ by over 50ms in 
the whole recording, divided by the total number of RR intervals and 
expressed as a percentage (pNN50). In the frequency domain1, high 
frequency (HF: 0.15-0.4 Hz), along with low frequency (LF: 0.04-0.15 
Hz) and very low frequency (VLF: 0.0033-0.04 Hz) oscillations were 
analysed both in terms of power (ms2) and peak frequency (Hz). In terms 
of the Poincaré graph30, the longitudinal (SD2) and transversal (SD1)31 
axes were analysed. To study the complex structure of the signal, two 
tools were used. Firstly, a Detrended Fluctuation Analysis (DFA)32,33 was 
conducted, measuring the correlation between data at different time 
scales through short and long term fluctuations that are characterised 
by slopes α1 and α2, respectively. And secondly, the irregularity of the 
signal was measured by means of approximate entropy (ApEn)34 and 
sample entropy (SampEn)35. 

Statistical analysis

A descriptive study was carried out of all the variables, determi-
ning their average values and standard deviation. The normality of 
distributions was assessed with the Shapiro-Wilk test. The contrast of 
hypothesis was carried out with the test of Kruskal-Wallis for the non-
normal variables (VLF, LF and HF, both in Hz and ms2) and a repeated 
measures ANOVA was used with the normal variables. The Bonferroni 
test was done as a test post-hoc and the significance threshold was 
set at p <0.05. 

Results 

Table 1 shows the average values and standard deviations for the 
measurements taken with each of the filters (none; very low; low; me-
dium; strong and very strong) for each of the HRV parameters analysed. 
Significant differences were only found for RMSSD, pNN50, power LF, 
power HF and SD1 when comparing the measurement taken without 
a filter to the very strong filter.

Table 2 shows the filter with which the first change is detected 
in each domine: Time Domine, Frequency Domine, Poincaré plot and 
Nonlineal values. Most subjects present changes with very low filter and 
no subject showed the first change with the VS filter. In other words, 

no subject reached the very strong filter without the record showed a 
change in some variable.

Discussion

The main contribution made by this paper was that the use of a 
filtering system provided by the Kubios® software for the treatment of 
artefacts did not affect the values of the HRV indices when they are 
analysed in group, with the exception of when the “very strong” filter 
was applied. The variables obtained by means of non-linear analysis 
methods were not even altered by the strongest filter on the signal 
filtering system of this software.

In an ideal situation, HRV analysis is conducted with a series of RR 
intervals including only pure SA beats (NN interval). However, the series 
of RR intervals obtained on the basis of ECG recordings in ambulatory 
measurements or portable devices within the world of sport (heart rate 
monitors) are in most cases imperfect, so they are not without artefacts. 
However, when working with cardiac patients there can also be added 
alterations caused by cardiac arrhythmia that can be present in up to 
90-95% of patients with acute myocardial infarction12. Hence the im-
portance of editing the RR series before analysing it, a task that is often 
missed when working quickly with commercial software. It is common 
engineering practice to resample the time series as well as the use of 
several smoothing models36,37. For Buchheit8, the presence of a single 
ectopic beat during a 5-min recording can modify HRV indices by up 
to 50% and for Thuraisingham22 ectopic beats cause erroneously high 
values in the standard deviation of the R-R intervals (SDNN). Ectopic 
beats can be common events, especially among patients with cardio-
vascular disease, but they can also be present in healthy subjects12. In 
addition to physiological artefacts, there can also be errors attributable 
to technical aspects when taking measurements or the software used to 
detect R-R artefacts. For example, the detection algorithm can be faulty 
if the R-R interval detection threshold is too low or too high. Therefore, 
artefacts and ectopic beats represent a problem that must be taken into 
account when measuring HRV since they could impact the reliability of 
the result. However, in general there is very little information about the 
filters used by different analysis software and the equations they apply. 

This study found no significant modifications in the HRV measure-
ments regardless of the filtering level used, with the exception of the 
very strong filter on the variables mentioned previously. This might be 
due to the use of measurements taken from top athletes, who present 
high variability that is probably less sensitive to the interpolations made 
for the filter. As for the changes observed when comparing the gross 
signal (no filter) with the very strong filter level, this could be due to 
the fact that the threshold established for this filtering level (0.05 s) is so 
demanding that what it actually does it intensely smoothes the signal 
that alters the results for some indices in the time and frequency doma-
ins, although without affecting the complex structure of the signal as 
demonstrated by the absence of changes in the non-linear parameters. 

As can be seen in Table 1, the rMSSD is the only variable that 
apparently shows a progressive decrease of the mean values as the 
filtering intensity increases, although the difference is not significant 
until using the VS filter. All other variables have apparently stable mean 
values until reaching the VS filter where they show a large change that 
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in some variables becomes statistically significant. Although in each 
individual record a progressive reduction of HRV can be observed from 
the filter that causes the first change (Table 2), in a group analysis no 
significant change is evident until reaching the VS filter because each 
record corrects its artifacts with a different level of filtering, but none 
of them reaches the VS filter.

These results have an interesting application for those studies of 
athletes in which these variables are analyzed in group38.

Sitting position is not standard for HRV analysis, although it is 
commonly used for short records in sports population6,38. However, 
this can be neglected in this study since this is only data acquisition for 
further technical analysis.

The duration of recordings (10 minutes) is in accordance with the 
guidelines of the Task Force1 which states that in studies researching HRV, 
the duration of recording is dictated by the nature of each investigation. 
In this case, our preoccupation was to provide enough data for nonlinear 
analysis and according to Pincus34 N for ApEn should be between 100 

and 900 data (for m=2). A 10 min recording contains about 600 data. 
For SampEn and DFA the N needed is similar39,40.

Conclusions

In conclusion, there are no significant differences between the 
results obtained by subjecting a series of data taken from top athletes 
to the different filters provided by Kubios® software, except the stron-
gest one.
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		  Filter	 None	 Very low	 Low	 Medium	 Strong	 Very strong	

SDNN (ms)	 Average	 135.81	 136.79	 133.05	 131.06	 121.41	 98.76 
		  SD	 55.83	 56.30	 54.47	 51.39	 48.54	 38.51	

RMSSD (ms)	 Average	 96.98	 90.55	 84.44	 76.09	 59.90	 25.76 (*) 
		  SD	 56.42	 49.70	 43.63	 36.13	 23.43	 4.96	

pNN50 (%)	 Average	 39.50	 39.96	 39.83	 39.01	 33.91	 5.53 (*)	  
		  SD	 22.33	 22.07	 22.04	 21.51	 18.05	 3.12	

VLF (Hz)	 Average	 0.01	 0.01	 0.01	 0.01	 0.01	 0.01	  
		  SD	 0.01	 0.01	 0.01	 0.01	 0.01	 0.00	

LF (Hz)	 Average	 0.07	 0.08	 0.07	 0.09	 0.07	 0.06	  
		  SD	 0.02	 0.02	 0.02	 0.09	 0.02	 0.01	

HF (Hz)	 Average	 0.20	 0.20	 0.20	 0.20	 0.19	 0.25	  
		  SD	 0.05	 0.05	 0.05	 0.05	 0.04	 0.38	

VLF (ms2)	 Average	 9,964.63	 11,059.90	 10,888.94	 11,356.78	 10,109.38	 8,024.69	  
		  SD	 8,282.29	 10,324.11	 10,256.56	 11,414.19	 10,009.39	 7,119.34	

LF (ms2)	 Average	 5,968.57	 5,802.70	 5,491.25	 4,793.61	 3,458.68	 987.40(*)	  
		  SD	 4,625.82	 4,265.79	 3,935.40	 2,998.78	 2,037.96	 389.75	

HF (ms2)	 Average	 2,853.30	 2,585.98	 2,304.20	 1,829.54	 1,023.63	 117.95(*)	  
		  SD	 3,060.02	 2,641.39	 2,228.81	 1,604.62	 753.70	 60.34	

SD1		 Average	 69.24	 64.10	 59.76	 53.85	 40.62	 18.23(*)	  
		  SD	 39.89	 35.19	 30.89	 25.58	 17.81	 3.52	

SD2		 Average	 178.12	 181.55	 179.56	 176.73	 165.69	 138.11	  
		  SD	 70.82	 73.31	 72.95	 69.32	 67.95	 54.75	

DFA alpha 1	 Average	 1.19	 1.22	 1.25	 1.27	 1.31	 1.55	  
		  SD	 0.25	 0.23	 0.21	 0.19	 0.19	 0.11	

DFA alpha 2	 Average	 0.99	 1.00	 1.00	 0.99	 1.07	 1.26	  
		  SD	 0.10	 0.10	 0.10	 0.20	 0.11	 0.14	

ApEn	 Average	 1.15	 1.16	 1.16	 1.16	 1.14	 0.82	  
		  SD	 0.10	 0.10	 0.10	 0.10	 0.12	 0.18	

SampEn	 Average	 1.29	 1.30	 1.31	 1.32	 1.29	 0.80 
		  SD	 0.26	 0.26	 0.27	 0.28	 0.28	 0.22	

Average values and standard deviation for each measurement and each of the filters (none; very low; low; medium; strong. very strong) for each of the HRV parameters analysed. (*) p <0.001. 
ApEn, approximate entropy; SampEn, sample entropy; DFA, detrended fluctuation analysis; HF, high frequency; LF, low frequency; pNN50, number of pairs of adjacent RR intervals that differ 
by over 50ms in the whole recording, divided by the total number of RR intervals and expressed as a percentage; rMSSD: square root of the mean of the squares of the differences between 
adjacent RR intervals; SDNN: standard deviation of RR intervals; SD1: transversal  diameter; SD2: longitudinal diameter; VLF: very low frequency.

Table 1. Average and standard deviation for each measurement and each of the filters.



Carmen Aranda, et al.

200 Arch Med Deporte 2017;34(4):196-200

Bibliography
 1. Task Force of ESC and NASPE. Heart rate variability, standards of measurement, phy-

siological interpretation, and clinical use. Circulation. 1996;93(5):1043-65.
 2. Kleiger RE, Stein PK, Bigger JTJr. Heart rate variability: measurement and clinical utility. 

Ann Noninvasive Electrocardiol. 2005;10(1):88-101.
 3. De la Cruz B, López C, Naranjo J. Analysis of heart rate variability at rest and during 

aerobic exercise: a study in healthy people and cardiac patients. Br J Sports Med. 
2008;42(9):715-20.

 4. De la Cruz B, Naranjo J. Multiscale time irreversibility of heartbeat at rest and during 
aerobic exercise. Cardiovasc Eng. 2010;10(1):1-4.

 5. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am. 
1990;262(2):42-9.

 6. Bachman TN, Bursic JJ, Simon MA, Champion HC. A Novel Acquisition Technique to 
Utilize Swan-Ganz Catheter data as a Surrogate for High-fi delity Micromanometry 
within the Right Ventricle and Pulmonary Circuit. Cardiovasc Eng Technol. 2013;4(2):183-
91.

 7. Naranjo J, De la Cruz B, Sarabia E, Del Hoyo M, Domínguez-Cobo S. Two new indexes for 
the assement of autonomic balance in elite soccer players. Int J Sports Physiol Perform. 
2015;10(4):452-7. 

 8. Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome?. 
Front Physiol. 2014;5(73):1-19. 

 9. Peltola MA. Role of editing of R-R intervals in the analysis of heart rate variability. Front 
Physiol. 2012;3(148):1-10. 

 10. Kumaravel N, Santhi C. Nonlinear fi lters for preprocessing heart rate variability signals. 
Int J Comp Sci Network Secur. 2010;10:250-4.  

 11. Colak OH. Preprocessing eff ects in time-frequency distributions and spectral analysis 
of heart rate variability. Digit Signal Process. 2009;19:731-9. 

 12. Kamath MV, Fallen EL. Correction of heart rate variability signal for ectopics and missing 
beats. En: Malik M, Camm AJ. Heart Rate Variability. New York; 1995. 75-85.

 13. Cheung MN. Detection of and recovery from errors in cardiac interbeat intervals. 
Psychophysiology 1981;18:341-6.

 14. Albrecht P, Cohen RJ. Estimation of heart rate power spectrum bands from real-world 
data: dealing with ectopic beats and noisy data. Comput Cardiol. 1988;311-14.

 15. Lippman N, Stein KM, Lerm BB. Nonlinear predictive interpolation. A new method for 
the correction of ectopic beats for heart rate variability analysis. J Electrocardiol. 1993;26 
(Suppl.):14-9. 

 16. Rottman JN, Steinman RC, Albrecht P, Bigger JTJr, Rolnitzky LM, Fleiss JL. Effi  cient esti-
mation of the heart period power spectrum suitable for physiologic or pharmacologic 
studies. Am J Cardiol. 1990;66:1522-4.

 17. Lombardi F, Sandrone G, Spinnler MT, Torzillo D, Lavezzaro GC, Brusca A, et al. Heart 
rate variability in the early hours of an acute myocardial infarction. Am J Cardiol. 1996A; 
77:1037-44.

 18. McNames J, Thong T, Aboy M. Impulse rejection fi lter for artifact removal in spectral 
analysis of biomedical signals. Conf Proc IEEE. Eng Med Biol Soc. 2004;1:145-8. 

 19. Mateo J, Laguna P. Analysis of heart rate variability in the presence of ectopic beats 
using the heart time signal. IEEE Trans Biomed Eng. 2003;50:334-43

 20. Solem K, Laguna P, Sörnmo L. An effi  cient method for handling ectopic beats using 
the heart timing signal. IEEE Trans Biomed Eng. 2006;53:13-20.

 21. Mietus JE. Time-Domain Measures: From Variance to pNNx 2006 (material electrónico) 
Consultado (08/04/2016) Disponible en: http://www.physionet.org/events/hrv-2006/
mietus-1.pdf. 

 22. Thuraisingham RA. Preprocessing RR interval time series for heart rate variability analysis 
and estimates of standard deviation of RR intervals. Comput Methods Programs Biomed. 
2006;83:78-82.

 23. Lee MY, Yu SN. Improving discriminality in heart rate variability analysis using simple 
artifact and trend removal preprocessors. Conf Proc IEEE Eng Med Biol Soc. 2010;2010: 
4574-7.

 24. Birkett CL, Kienzle MG, Myers GA. Interpolation over ectopic beats increases low 
frequency power in HRV spectra. Comput Cardiol. 1991;257-9.

 25. Salo M, Huikuri H, Seppänen T. Ectopic beats in heart rate variability analysis: eff ects 
of editing on time and frequency domain measures. Ann Noninvasive Electrocardiol 
2001;6:5-17.

 26. Tarkiainen TH, Kuusela TA, Tahvanainen KU, Hartkainen JE, Tiittanen P, Timonen KL, et al. 
Comparison of methods for editing of ectopic beats in measurements of short-term 
non-linear heart rate dynamics. Clin Physiol Funct Imaging. 2007;27:126-33.

 27. Sassi R, Mainardi LT. Editing RR series and computation of long-term scaling parameters. 
Comput Cardiol. 2008;35:565-8.

 28. Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios 
HRV--heart rate variability analysis software. Comput Methods Programs Biomed. 
2014;113(1):210-20. 

 29. Tarvainen MP. Kubios HRV USER´S GUIDE (material electrónico) 2012 (Consultado 
05/05/2016). Disponible es: http://kubios.uef.fi /media/Kubios_HRV_2.1_Users_Guide.pdf. 

 30. Kamen PW, Tonkin AM. Application of the poincaré plot of heart rate variability: a new 
measure of functional status in heart failure. Aust N Z J Med. 1995;25:18-26. 

 31. Brennan M, Palaniswami M, Kamen P. Do existing measures of poincare plot geometry 
refl ect nonlinear features of heart rate variability. IEEE Trans Biomed Eng. 2001;48: 1342-
47.  

 32. Peng CK, Havlin S, Stanley H, Goldberger AL. Quantifi cation of scaling exponents and 
crossoverphenomena in nonstationary heartbeat time series. Chaos. 1995;5:82-7.

 33. Penzel, T, Kantelhardt J, Grote L, Peter JH, Bunde A. Comparison of detrended fl uctuation 
analysis and spectralanalysis for heart rate variability in sleep and sleep apne. IEEE Trans 
Biomed Eng. 2003;50:1143-51. 

 34. Pincus SM. Aproximate entropy as a measure of system complexity. Proc Natl Acad Sci. 
1991;88:2297-01. 

 35. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy 
and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):2039-49.

 36. Eleuteri A, Fisher AC, GrovesA, Dewhurst CJ. The Ornstein-Uhlenbeck third-order Gaus-
sian process (OUGP) applied directly to the un-resampled heart rate variability (HRV) 
tachogram for detrending and low-pass fi ltering. Med Biol Eng Comput. 2012;50(7):737-
42.

 37. Eleuteri A, Fisher AC, Groves D, Dewhurst CJ. An effi  cient time-varying fi lter for detren-
ding and bandwidth limiting the heart rate variability tachogram without resampling: 
MATLAB open-source code and Internet web-based implementation. Comput Math 
Methods Med. 2012;2012:1-6.

 38. Naranjo J, De la Cruz B, Sarabia E, de Hoyo M, Domínguez-Cobo S. Heart rate variability: 
a follow-up in elite soccer players troughout the season. Int J Sports Med. 2015;36:881-6. 

 39. Lake DE, Richman JS, Griffi  n MP, Moorman JR. Sample entropy analysis of neonatal 
heart rate variability. Am J Physiol Regul Integr Comp Physiol. 2002;283(3):789-97.

 40. Govindan RB, Wilson JD, Preissl H, Eswaran H, Campbell JQ, Lowery CL. Detrended 
fl uctuation analysis of short datasets: An application to fetal cardiac data. Phys D: 
Nonlin Phenom. 2007;226(1):23-31.

Table 2. Filter that produced the fi rst change.

Subject Time  Frequency Poincaré Nonlineal Total
 domain domain plot variables 

 1 VL VL VL VL VL
 2 M M M M M
 3 VL VL VL VL VL
 4 VL VL VL VL VL
 5 M L L M L
 6 M M M M M
 7 S S S S S
 8 VL VL VL VL VL
 9 VL VL VL VL VL
10 M M M M M
11 VL VL VL VL VL
12 VL VL VL VL VL
13 S M M M M
14 L M L L L
15 S S S S S
16 S S S S S
17 L L L L L
18 M M M M M
19 S S S M M
20 L VL L VL VL
21 VL VL VL VL VL
22 M M M M M
23 VL VL VL VL VL
24 VL VL VL VL VL
25 VL VL VL VL VL
26 VL VL VL VL VL
27 L L VL VL VL
28 VL VL VL VL VL
29 VL VL VL VL VL
30 VL VL L VL VL

Filter with which the fi rst change is detected in Time Domain, Frequency Domain, Poincaré 
plot and Nonlineal variables (VL: very low; L: low; M: medium; S: strong). No subject showed 
the fi rst change with the VS fi lter. The last column (“Total”) shows the fi rst fi lter with which 
the fi rst change is observed in any variables.


